Modern Methods For Robust Regression Pdf Converter

Posted onby
  1. Modern Methods For Robust Regression Pdf Converter
  2. M Estimate In Robust Regression
  1. Regression methods. Modern methods for robust regression andersen An Appendix to n R Companion to pplied Regression, Second Edition. The most common general method of robust regression is M-estimation, introduced by Hu. Modern methods for robust regression pdf Modern Methods for Robust Regression.
  2. Chapter 308 Robust Regression Introduction. The robust methods found in NCSS fall into the family of M-estimators. This estimator minimizes the sum of a function ρ() of the residuals. That is, these. Suggest that you study one of the modern texts on regression analysis. All of these texts have chapters on robust.
Pdf

The aim of this study was to investigate the possibility of predicting the type and concentration level of astaxanthin coating of aquaculture feed pellets using multispectral image analysis. We used both natural and synthetic astaxanthin, and we used several different concentration levels of synthetic astaxanthin in combination with four different recipes of feed pellets. We used a VideometerLab with 20 spectral bands in the range of 385–1050 nm. We used linear discriminant analysis and sparse linear discriminant analysis for classification and variable selection. We used partial least squares regression (PLSR) for prediction of the concentration level. The results show that it is possible to predict the level of synthetic astaxanthin coating using PLSR on either the same recipe, or when calibrating on all recipes. The concentration prediction is adequate for screening for all recipes. Moreover, it shows that it is possible to predict the type of astaxanthin used in the coating using only ten spectral bands. Finally, the most selected spectral bands for astaxanthin prediction are in the visible range of the spectrum.

Keywords Multispectral, Image analysis, Spectral imaging, NIR, Astaxanthin, Fish feed, Coating

Modern Methods For Robust Regression Pdf Converter

Pdf

Robust Statistics are different from robust tests, which are defined as tests that will still work well even if one or more assumptions are altered or violated. For example, Levene’s test for equality of variances is still robust even if the assumption of normality is violated. When You Shouldn’t Rely on Robustness.

M Estimate In Robust Regression

1. Simopoulos, A.P. . “Omega-3 Fatty Acids in Health and Disease and in Growth and Development”. Am. J. Clin. Nutr. 1991. 54: 438463.
Google Scholar Medline ISI
2. Torrisen, O.J., Hardy, R.W., Shearer, K.D.. “Pigmentation of Salmonids—Carotenoid Deposition and Metabolism.”. Rev. Aquat. Sci. 1989. 1(2): 209225.
Google Scholar
3. Baker, R.T.M., Pfeiffer, A.-M., Schöner, F.-J., Smith-Lemmon, L.. “Pigmenting Efficacy of Astaxanthin and Canthaxanthin in Fresh-Water Reared Atlantic Salmon, Salmo solar. Anim. Feed Sci. Technol. 2002. 99(1–4): 97106.
Google Scholar Crossref ISI
4. Ljungqvist, M.G., Ersbøll, B.K., Nielsen, M.E., Frosch, S.. “Multispectral Image Analysis for Astaxanthin Coating Classification”. J. Imaging Sci. Technol. 2012. 56(2): 020403.
Google Scholar Crossref
5. Zhu, F., Cheng, S., Wu, D., He, Y.. “Rapid Discrimination of Fish Feeds Brands Based on Visible and Short-Wave Near-Infrared Spectroscopy”. Food Bioprocess Tech. 2011. 4(4): 597602.
Google Scholar Crossref ISI
6. Park, B., Chen, Y.R., Nguyen, M.. “Multi-Spectral Image Analysis Using Neural Network Algorithm for Inspection of Poultry Carcasses”. J. Agric. Eng. Res. 1998. 69(4): 351363.
Google Scholar Crossref
7. Wold, J.P., Westad, F., Heia, K.. “Detection of Parasites in Cod Fillets by Using Simca Classification in Multispectral Images in the Visible and NIR Region”. Appl. Spectrosc. 2001. 55(8): 10251034.
Google Scholar SAGE Journals ISI
8. Brosnan, T., Sun, D.-W.. “Improving Quality Inspection of Food Products by Computer Vision—A Review”. J. Food Eng. 2004. 61(1): 316.
Google Scholar Crossref ISI
9. Lawrence, K.C., Windham, W.R., Park, B., Smith, D.P., Poole, G.H.. “Comparison Between Visible/NIR Spectroscopy and Hyperspectral Imaging for Detecting Surface Contaminants on Poultry Carcasses”. Proc. SPIE 2004. 5271(1): 3542.
Google Scholar Crossref
10. Clemmensen, L.H., Ersbøll, B.K.. “Multispectral Recordings and Analysis of Psoriasis Lesions”. MICCAI 06—Workshop on Biophotonics Imaging for Diagnostics and Treatment. Technical University of Denmark: Kgs. Lyngby, Denmark, October 6, 2006.
Google Scholar
11. Stormo, S.K., Sivertsen, A.H., Heia, K., Nilsen, H., Elvevoll, E.. “Effects of Single Wavelength Selection for Anisakid Roundworm Larvae Detection Through Multispectral Imaging”. J. Food Prot. 2007. 70(8): 18901895.
Google Scholar Crossref Medline ISI
12. Gomez, D.D., Clemmensen, L.H., Ersbøll, B.K., Carstensen, J.M.. “Precise Acquisition and Unsupervised Segmentation of Multi-Spectral Images”. Comput. Vis. Image Underst. 2007. 106(2–3): 183193.
Google Scholar Crossref ISI
13. Clemmensen, L.H., Hansen, M.E., Frisvad, J.C., Ersbøll, B.K.. “A Method for Comparison of Growth Media in Objective Identification of Penicillium Based on Multi-Spectral Imaging”. J. Microbiol. Methods 2007. 69(2): 249255.
Google Scholar Crossref Medline ISI
14. Clemmensen, L.H., Hansen, M.E., Ersbøll, B.K.. “A Comparison of Dimension Reduction Methods with Application to Multi-Spectral Images of Sand Used in Concrete”. Mach. Vis. Appl. 2010. 21(6): 959968.
Google Scholar Crossref ISI
15. Kobayashi, K., Matsui, Y., Maebuchi, Y., Toyota, T., Nakauchi, S.. “Near Infrared Spectroscopy and Hyperspectral Imaging for Prediction and Visualisation of Fat and Fatty Acid Content in Intact Raw Beef Cuts”. J. Near Infrared Spectrosc. 2010. 18(5): 301315.
Google Scholar SAGE Journals ISI
16. Dissing, B.S., Nielsen, M.E., Ersbøll, B.K., Frosch, S.. “Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids”. PLoS One. 2011. 6(5): e19032.
Google Scholar Crossref Medline ISI
17. Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M.-F., Debeir, O.. “Automatic Grading of Bi-Colored Apples by Multispectral Machine Vision”. Comput. Electron. Agric. 2011. 75(1): 204212.
Google Scholar Crossref ISI
18. Nielsen, M.E., Mikkelsen, H., Nielsen, L.B., Joensen, O.. “By-Product Based Production of Natural Astaxanthin (NAX)”. 7th Joint meeting: 50th Annual Atlantic Fisheries Technology Conference and 29th Annual Seafood Science and Technology Society of the Americas. Norfolk, VA; November 6–9, 2005.
Google Scholar
19. Carstensen, J.-M., Folm-Hansen, J.. “An Apparatus and a Method of Recording an Image of an Object”. Patent EP1051660. Filed 1999. Issued 2003.
Google Scholar
20. Folm-Hansen, J. . On Chromatic and Geometrical Calibration. [Ph.D. Thesis]. Kgs. Lyngby, Denmark: Technical University of Denmark, 1999.
Google Scholar
21. Serra, J. . Image Analysis and Mathematical Morphology. London, UK: Academic Press, 1982. Pp. 50.
Google Scholar
22. Dissing, B.S., Carstensen, J.M., Larsen, R.. “Multispectral Colormapping Using Penalized Least Square Regression”. J. Imaging Sci. Technol. 2010. 54(3): 03040110304016.
Google Scholar Crossref
23. Ersbøll, B.K., Conradsen, K.. An Introduction to Statistics, vol. 2. Kgs. Lyngby, Denmark: DTU Informatics, 2007. 7th ed. Pp. 263, 198200, 241252.
Google Scholar
24. Hotelling, H. . “Relations Between Two Sets of Variates”. Biometrika. 1936. 28(3/4): 321377.
Google Scholar Crossref
25. Clemmensen, L.H., Hastie, T., Witten, D., Ersbøll, B.K.. “Sparse Discriminant Analysis”. Technometrics. 2011. 53(4): 406413.
Google Scholar Crossref ISI
26. Zou, H., Hastie, T.. “Regularization and Variable Selection via the Elastic Net”. J. Roy. Stat. Soc. B. 2005. 67: 301320.
Google Scholar Crossref
27. Hastie, T., Tibshirani, R., Friedman, J.. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer, 2009. 2nd ed. Pp. 8082, 242, 547.
Google Scholar Crossref
28. Sjöström, M., Wold, S., Lindberg, W., Persson, J.-Å., Martens, H.. “A Multivariate Calibration Problem in Analytical Chemistry Solved by Partial Least-Squares Models in Latent Variables”. Anal. Chim. Acta. 1983. 150: 6170.
Google Scholar Crossref ISI
29. Williams, P.C., Sobering, D.C.. “Comparison of Commercial Near Infrared Transmittance and Reflectance Instruments for Analysis of Whole Grains and Seeds”. J. Near Infrared Spectrosc. 1993. 1(1): 2532.
Google Scholar SAGE Journals
30. Buchwald, M., Jencks, W.P.. “Optical Properties of Astaxanthin Solutions and Aggregates”. Biochemistry. 1968. 7(2): 834843.
Google Scholar Crossref Medline ISI
31. Yuan, J.-P., Chen, F.. “Identification of Astaxanthin Isomers in Haematococcus lacustris by HPLC-Photodiode Array Detection”. Biotechnol. Tech. 1997. 11(7): 455459.
Google Scholar Crossref ISI
32. Amarie, S., Förster, U., Gildenhoff, N., Dreuw, A., Wachtveitl, J.. “Excited State Dynamics of the Astaxanthin Radical Cation”. Chem. Phys. 2010. 373(1–2): 814.
Google Scholar Crossref ISI