Acoustic Fields And Waves In Solids Pdf Files

Posted onby

Acoustic fields and waves in solids 1 Download acoustic fields and waves in solids 1 or read online here in PDF or EPUB. Please click button to get acoustic fields and waves in solids 1 book now. All books are in clear copy here, and all files are secure so don't worry about it.

  1. Acoustic Fields And Waves In Solids Pdf Files Free
  2. Fields And Waves In Communication Electronics

Abstract

Acoustic fields and waves in solids. [B A Auld] Home. WorldCat Home About WorldCat Help. Search for Library Items Search for Lists Search for Contacts Search for a Library. Create lists, bibliographies and reviews: or Search WorldCat. Find items in libraries near you. Acoustic fields and waves in solids Download Book Acoustic Fields And Waves In Solids in PDF format. You can Read Online Acoustic Fields And Waves In Solids here in PDF.

We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

Introduction

Concerning the interior of the Earth, it is a common understanding that the interior is composed of the regular sequences of isotropic thin layers of different properties. When the prevailing wavelength of a seismic wave is larger than the thickness of the individual layers, the sequences of thin layers behave anisotropically, whereas still transversely isotropic1,2,3,4. This macroscopically transversely isotropic medium with a vertical axis of symmetry is called a VTI medium5. In such a case, the mechanical property of a VTI medium can be described by the elastic stiffness tensor of a hexagonal crystal3,4,5,6,7. Based on these understandings, the influences of rock anisotropy on polarization, propagation and reflection/refraction of elastic waves have been studied and reported extensively7,8,9,10,11,12, e.g. the polarization direction of an elastic P-wave, which is different from propagation direction; the propagation velocity that is different from phase velocity; and the reflection/refraction coefficients, which vary with respect to the acoustic impendence and anisotropy of media.

The study on reflection of acoustic wave is very important to geophysics; for example, Nedimovic et al. analyzed the reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface13 and Canales et al. discussed the seismic reflection images of a near-axis sill within the lower crust of the Juan de Fuca ridge14. Acoustic waves also bear many similarities to optical or electromagnetic waves in propagation, reflection, refraction, and polarization. Grady et al. reported linear conversion and anomalous refraction for electromagnetic waves15. Genevet et al. studied the phenomena of anomalous reflection/refraction of light and its propagation with phase discontinuities16. Fa et al. predicted the existence of an anomalous incident-angle for an inhomogeneously refracted P-wave11.

In this paper, we show that there exists a physically significant anomalous incident-angle for the refracted P-wave. With this anomalous incident-angle, the incident-angle region can be classified into three sections: the pre-critical incident-angle region, the area between the critical incident-angle and the anomalous incident-angle, and the post-anomalous incident-angle region. There are two distinctive phase velocity solutions before and after the anomalous incident-angle. For an inhomogeneously refracted elliptically-polarized P-wave, the anomalous incident-angle will cause an acute rotational-direction variation.

Results

Modeling

Considering a P-wave propagating in the x-z plane impinging on the interface (x-y plane) between two VTI media, the system can be described schematically as in Fig. 1.

We performed calculations for two sedimentary rocks with some very well-known physical properties, as reported by geophysicists and given in Table 12,11,17. In this paper, we use anisotropic shale (A-shale) as the incidence medium and oil shale (O-shale) as the refraction medium. For this system, by calculation, we found that there is an anomalous incident-angle at .

The elements of the elastic stiffness tensor, related to the anisotropic rock parameters, are given by Thomsen2,

For a harmonic acoustic-field, the wave displacements can be written as

In the equations above, θ(m) is either an incident-angle or a reflection/refraction angle, and and are polarization coefficients; ϕ(m) is the phase shift for an induced wave relative to the incident P-wave and ϕ(0) is defined as 0°; R(m) is either the reflection or refraction coefficient for each induced wave, and R(0) is defined as 1. For the refracted P-wave, the critical incident-angle is denoted by , and the anomalous incident-angle is given as .

For the incident-angle range of , the reflection/refraction coefficients are real (not complex) and ϕ(m) is 0° or 180°. In the range of , the reflection/refraction coefficients are complex and ϕ(m) (−180°, 180°).

Verification of an anomalous incident-angle

The core existence of an anomalous incident-angle for an elastically refracted P-wave can be confirmed from Snell’s law. Based on the Christoffel equation, the solutions of the phase velocity for the incident wave (P-wave or SV-wave) and the four induced waves are given by3,8where , , , , . Denoting the anomalous incident-angle as , the phase velocities of the refracted P-wave are for and for . They abide by Snell’s law such that for , and for .

The reflection/refraction angles are calculated from the fourth-order polynomials of 11where, , , , , , , , , and . Eq. (13) can be used to calculate the refraction angles and determine the existence of the anomalous incident-angle, denoted by .

As shown in Fig. 2a, the value of is purely real for ; whereas for , it is purely imaginary, as shown in Fig. 2b. Figure 3a,b show that for θ(0) [0°, 90°], is real (not complex). In Fig. 3c,d, the value of is real for and purely imaginary for . For , both and are purely imaginary. Figure 4b,c show that is equal to for and is equal to for . The curve segment in Fig. 4b plus curve segment in Fig. 4c forms the curve in Fig. 4d, which is the same as that in Fig. 4a. Here, for , is purely real and is purely imaginary, so during the plotting of the relationship of versus θ(0), the computer takes the value of as zero automatically.

These results show clearly that Snell’s law is satisfied only if the phase velocity solution of the refracted P-wave is switched to from at θ(0) = 62.04°. And therefore, there is an anomalous incident-angle of . It resides in a region passing the critical incident angle , up to an incident angle 90°.

Verification of elliptically-polarized rotational direction change

Verification of elliptically-polarized rotational direction change can be achieved by invoking the so called energy balance principle. The polarization coefficients for the incident wave and the four induced waves are given by11andwhere the definitions of , and refer to those of Eq. (S2) in “Supplementary material for Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave”.

From Eqs. (14) and (15) we can obtain the expressions of polarization coefficients for the incident P-wave and the homogenous waves induced at the interface,

For the refracted P-wave is inhomogenous. Eqs. (14) and (15) provide two sets of solutions for the polarization coefficients (refer to Eqs. (S9) and (S10) in “Supplementary material for Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave”).and

An alternative confirmation of the anomalous incident-angle may be achieved by looking at the z-component of Poynting vector, which can be obtained from the reflection/refraction coefficients11. Specifically, we look at the normalized z-component, , of the incident P-wave. We also look at the normalized real parts of z-components from the four induced waves:

Now, consider the polarization coefficients calculated from Eqs. (16) and (17) as those of the incident P-wave, reflected P-wave, reflected SV-wave and refracted SV-wave for θ(0) [0°, 90°] and the refracted P-wave for . Meanwhile, Eqs.(18) and (19) provide the polarization coefficients of the refracted P-wave for . Then the normalized real parts of z-components of Poynting vectors are plotted dashed-lines in Fig. 5a,b. It shows clearly that, for , the real part of is not identical to . Therefore, it is a violation of the energy balance principle. However, for , if we switch the calculation of polarization coefficients from Eqs. (18) and (19) to Eqs. (20) and (21), then the real part of is equal to , as shown by the solid-line in Fig. 5b, which abides the energy balance principle.

For an inhomogenous refracted P-wave, the x-component of the polarization has a lag of 90° with respect to its z-component, which is defined as a left-rotational elliptical-polarized wave; otherwise, it is called a right-rotational elliptical-polarized wave. Figure 5 shows that a refracted P-wave is a linearly polarized wave for , a left-rotational elliptical-polarized wave for , and a right-rotational elliptical-polarized wave for . There is an elliptically-polarized rotational direction change at the anomalous incident-angle .

Discussion

The current studies of the interface between two VTI media show that there is an anomalous incident-angle with respect to the refracted P-wave in the area . At such an incident-angle , the phase velocity of the refracted P-wave must be switched from to to satisfy Snell’s law. The inhomogeneously refracted P-wave experiences a sudden change from a left-rotational to a right-rotational elliptical-polarization.

It is worth noting that there is an anomalous incident-angle for the refracted P-wave, but no such an anomalous incident-angle θ(4) for the refracted SV-wave. As an example, let’s look at the interface between S-shale and C-sandstone. In this case, there are two critical incident-angles, i.e. and . The phase velocity of P-waves in S-shale is smaller than those of P-waves and SV-waves in C-sandstone (see Fig. 6). There is an anomalous incident-angle corresponding to the refracted P-wave at . However, even with the second critical incident-angle and the refracted SV-wave becoming an inhomogeneous wave for , we have not observed the existence of an anomalous incident-angle corresponding to the refracted SV-wave.

Additional Information

Acoustic Fields And Waves In Solids Pdf Files Free

How to cite this article: Fa, L. et al. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave. Sci. Rep.5, 12700; doi: 10.1038/srep12700 (2015).

References

  1. 1.

    Backus, G. L.Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962).

  2. 2.

    Thomsen, L.Weak elastic anisotropy. Geophysics51, 1954–1966 (1986).

  3. 3.

    Carcione, J. M.Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media (Elsevier Science Vol. 31, Pergamon, 2001).

  4. 4.

    Ĉervenŷ, V.Seismic Ray Theory (Cambridge University Press, Cambridge, U. K., 2001).

  5. 5.

    Rüger, A.Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media (Society of Exploration Geophysicists, No. 10, USA, 2002).

  6. 6.

    Auld, B. A.Acoustic Fields and Waves in Solids (Wiley Vol. 1, New York, USA, 1972).

  7. 7.

    Rüger, A.P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics62, 713–722 (1997).

  8. 8.

    Daley, P. F. & Hron, F.Reflection and transmission coefficients for transversely isotropic media. Bull. Seismol. Soc. Amer. 67, 661–675 (1977).

  9. 9.

    Crampin, S., Stephen, R. A. & McGonigle, R.The polarization of P-waves in anisotropic media. Geophys. J. Roy. Astr. S. 68, 477–485 (1982).

  10. 10.

    Helbig, K. & Schoenberg, M.Anomalous polarization of elastic waves in transversely isotropic media. J. Acoust. Soc. Am. 81, 1235–1245 (1987).

  11. 11.

    Fa, L., Brown, R. L. & Castagna, J. P.Anomalous post-critical refraction behavior for certain transversely isotropic media. J. Acoust. Soc. Am. 120, 3479–3492 (2006).

  12. 12.

    Fa, L.et al.Polarization of plane wave propagating inside elastic hexagonal crystal solids. Sci. China: Phys. Mech. Astron. 57, 263–272 (2014).

  13. 13.

    Nedimovic, M. R., Hyndman, R. D., Ramachandran K. & Spence, G. D.Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature. 424, 416–420 (2003).

  14. 14.

    Canales, P., Nedimovic, M. R., Kent, G. M., Carbotte, S. M. & Detrick, R. S.Seismic reflection images of a near-axis sill within the lower crust at the Juan de Fuca ridge. Nature. 460, 89–93 (2009).

  15. 15.

    Grady, N. K.et al.Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 340, 1304–1307 (2013).

  16. 16.

    Yu, N.et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 334, 333–337 (2011).

  17. 17.

    Wang, Z.Seismic anisotropy in sedimentary rocks, part 2: Laboratory data. Geophysics. 67, 1423–1440 (2002).

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 40974078) and by the Physical Sciences Division at The University of Chicago.

Author information

Affiliations

  1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China

    • Lin Fa
    • , Yandong Zhang
    • , Pengfei Ding
    • , Jiamin Gong
    • , Guohui Li
    • , Lijun Li
    • & Shaojie Tang
  2. Kunlun Energy Company Limited, Hongkong 999077, China

    • Yuxiao Fa
  3. James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA

    • Meishan Zhao
Fields and waves in communication

Authors

    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed
    • Nature Research journals
    • PubMed

Contributions

L.F. and M.Z. initiated the project and contributed to the writing of the paper. Y.F. managed the project, Y.Z., P.D. and J.G. performed calculations, G.L. L.L. and S.T. checked calculated results. All authors co-wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Lin Fa.

Supplementary information

Rights and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Fields And Waves In Communication Electronics

About this article

Publication history

Accepted

DOI

Further reading

  • Polarization state of an inhomogenously refracted compressional-wave induced at interface between two anisotropic rocks

    The Journal of the Acoustical Society of America (2017)

  • Acoustic Goos-Hänchen effect

    Science China Physics, Mechanics & Astronomy (2017)

  • The influence of rock anisotropy on elliptical-polarization state of inhomogenously refracted P-wave

    Science China Physics, Mechanics & Astronomy (2016)

Acoustic Fields And Waves In Solids Pdf Files

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Article Tools